Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1815, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002237

RESUMO

Electron transfer is the most elementary process in nature, but the existing electron transfer rules are seldom applied to high-pressure situations, such as in the deep Earth. Here we show a deep learning model to obtain the electronegativity of 96 elements under arbitrary pressure, and a regressed unified formula to quantify its relationship with pressure and electronic configuration. The relative work function of minerals is further predicted by electronegativity, presenting a decreasing trend with pressure because of pressure-induced electron delocalization. Using the work function as the case study of electronegativity, it reveals that the driving force behind directional electron transfer results from the enlarged work function difference between compounds with pressure. This well explains the deep high-conductivity anomalies, and helps discover the redox reactivity between widespread Fe(II)-bearing minerals and water during ongoing subduction. Our results give an insight into the fundamental physicochemical properties of elements and their compounds under pressure.

2.
Environ Sci Ecotechnol ; 11: 100181, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36158762

RESUMO

Reductive immobilization has been a commonly used technique to detoxify Cr(VI) from soil; however, it's challenging to remove the reduced Cr from soil to prevent its re-oxidation. This work explored a natural magnetic composite for the remediation, mineralization, and magnetic removal of Cr(VI) from the soil. It consists of 77% magnetite and 23% pyrrhotite with strong magnetic properties. A series of characterization tests show that composites of magnetite and pyrrhotite are interlaced and closely bonded, and contain no other heavy metals. The Cr(VI) removal rate increases with the decrease in composite particle size. A kinetics study shows that removing Cr(VI) by the composite is likely through both adsorption and reduction. Acidic conditions are more favorable for the immobilization of Cr(VI), at 45.8 mg Cr(VI) removal per g of composite at pH 2. After 100 days of in-situ treatment by the composite, the leaching concentration (TCLP) of Cr(VI)-contaminated soil was 1.95 mg L-1, which was below the EPA limit (5 mg L-1) for hazardous waste. After reduction, the composite was separated from soil by magnetic characteristics, and 58.2% of Cr was found mineralized. The post-treatment Cr-containing composite was analyzed by SEM-EDS, Raman spectra, and XPS. It was found that Cr was mineralized on the surface of the composite in the form of Cr(OH)3, Cr2O3, and FeCr2O4. This indicates that reduction and mineralization of Cr(VI) in the soil can be accomplished through natural magnetic mineral composites and easily separated and removed from the soil, achieving a complete soil cleanup.

3.
Front Microbiol ; 13: 846441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479644

RESUMO

Marine euphotic zone is the pivotal region for interplay of light-mineral-microorganism and elements cycle, in which semiconducting minerals exist widely and iron-bearing goethite is a typical and widespread one. In this work, we have conducted in-depth researches on the effect of ferrous [Fe(II)] ions dissolved by photoreduction of goethite on microbial community structure and diversity. The mineral phase, structure and morphology of synthesized goethite were characterized by Raman, X-ray diffraction (XRD), energy disperse spectroscopy (EDS), environmental scanning electron microscope (ESEM), and atomic force microscope (AFM). Photoelectrochemical measurements tested photoelectric response and redox activity of goethite, having proved its significant property of photoelectric response with 44.11% increment of the average photocurrent density relative to the dark current density. The photoreduction experiments of goethite were conducted under light condition in simulated seawater. It has suggested the photoreduction of goethite could occur and Fe(III) was reduced to Fe(II). The dissolved Fe(II) from the photoreduction of goethite under light condition was nearly 11 times than that group without light after a 10-day reaction. Furthermore, results of microbial community sequencing analysis indicated that dissolved Fe(II) could affect the structure and regulate the decrease of microbial community diversity. The emergence of dominant bacteria associated with iron oxidation and transport protein has suggested their obvious selectivity and adaptability in the environment with adding dissolved Fe(II). This work revealed the photoreduction process of semiconducting goethite was remarkable, giving rise to a non-negligible dissolved Fe(II) and its selective effect on the structure, diversity, as well as the function of microbial community. This light-induced interaction between minerals and microorganisms may also further regulate correlative metabolic pathways of carbon cycle in the marine euphotic zone.

4.
Bioelectrochemistry ; 141: 107849, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34098461

RESUMO

Focusing the marine euphotic zone, which is the pivotal region for interaction of solar light-mineral-microorganism and the elements cycle, we have conducted the research on the mechanism of semiconducting minerals promoting extracellular electron transfer with microorganisms in depth. Therein, anatase which is one of the most representative semiconducting minerals in marine euphotic zone was selected. The mineralogical characterization of anatase was identified by ESEM, AFM, EDS, Raman, XRD, and its semiconducting characteristics was determined by UV-Vis and Mott-Schottky plots. Determined by the electrochemical measurement of I-t curves, the photocurrent density of anatase was more prominent than dark current density. Pseudomonas aeruginosa PAO1 was widely distributed in the euphotic zone, and its mutants of operons deficient in biosynthesis pyocyanin (Δphz1Δphz2) and pili deficient (ΔpilA) were employed in this study. I-t curves indicated that both direct and indirect extracellular electron transfer processes occurred between anatase and PAO1. The indirect electron transfer depending on pyocyanin secreted by PAO1 was the main electron transfer mode. This work demonstrated the light-driven extracellular electron transfer and further revealed the photo-catalyzed mechanisms between anatase and PAO1 in marine euphotic zone.


Assuntos
Pseudomonas aeruginosa/metabolismo , Titânio/metabolismo , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Microscopia Eletrônica de Varredura , Análise Espectral/métodos
5.
J Nanosci Nanotechnol ; 21(1): 547-554, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213653

RESUMO

Calcification exists in atherosclerotic plaques in the form of nanomineral aggregates and is closely related to the development of atherosclerosis. Spheroidal and massive calcification are two major types of calcification found in atherosclerotic tissue. However, the exact difference between these two types of calcification is still not clear. Samples composed entirely of spheroidal calcifications and massive calcifications were isolated from aortic atherosclerotic plaques and tested using both bulk and microscopic analysis techniques. Scanning electron microscopy and transmission electron microscopy showed that spheroidal calcifications had a core-shell structure. Massive calcifications were composed of randomly arranged nanocrystals. Synchrotron radiation X-ray diffraction, Raman spectroscopy and selected area electron diffraction showed amorphous calcium phosphate, whitlockite and carbonate hydroxyapatite all existing in spheroidal calcification, while massive calcification only consisted of carbonate hydroxyapatite. We conclude that amorphous calcium phosphate may act as a precursor phase of spheroidal calcifications that eventually transforms into a crystalline phase, while whitlockite in lesions could aggravate the progression of atherosclerosis.


Assuntos
Aterosclerose , Calcinose , Placa Aterosclerótica , Aterosclerose/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Durapatita , Humanos , Placa Aterosclerótica/diagnóstico por imagem
6.
Sci Adv ; 6(47)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33208363

RESUMO

Terrestrial hydrothermal systems have been proposed as alternative birthplaces for early life but lacked reasonable scenarios for the supply of biomolecules. Here, we show that elemental sulfur (S0), as the dominant mineral in terrestrial hot springs, can reduce carbon dioxide (CO2) into formic acid (HCOOH) under ultraviolet (UV) light below 280 nm. The semiconducting S0 is indicated to have a direct bandgap of 4.4 eV. The UV-excited S0 produces photoelectrons with a highly negative potential of -2.34 V (versus NHE, pH 7), which could reduce CO2 after accepting electrons from electron donors such as reducing sulfur species. Simultaneously, UV light breaks sulfur bonds, benefiting the adsorption of charged carbonates onto S0 and assisting their photoreduction. Assuming that terrestrial hot springs covered 1% of primitive Earth's surface, S0 at 10 µM could have produced maximal 109 kg/year HCOOH within 10-cm-thick photic zones, underlying its remarkable contributions to the accumulation of prebiotic biomolecules.

7.
Microorganisms ; 8(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027938

RESUMO

The solar light response and photoelectrons produced by widespread semiconducting mineral play important roles in biogeochemical cycles on Earth's surface. To explore the potential influence of photoelectrons generated by semiconducting mineral particles on nitrate-reducing microorganisms in the photic zone, a marine heterotrophic denitrifier Halomonas sp. strain 3727 was isolated from seawater in the photic zone of the Yellow Sea, China. This strain was classified as a Halomonadaceae. Whole-genome analysis indicated that this strain possessed genes encoding the nitrogen metabolism, i.e., narG, nasA, nirBD, norZ, nosB, and nxr, which sustained dissimilatory nitrate reduction, assimilatory nitrate reduction, and nitrite oxidation. This strain also possessed genes related to carbon, sulfur, and other metabolisms, hinting at its substantial metabolic flexibility. A series of microcosm experiments in a simulative photoelectron system was conducted, and the results suggested that this bacterial strain could use simulated photoelectrons with different energy for nitrate reduction. Nitrite, as an intermediate product, was accumulated during the nitrate reduction with limited ammonia residue. The nitrite and ammonia productions differed with or without different energy electron supplies. Nitrite was the main product accounting for 30.03% to 68.40% of the total nitrogen in photoelectron supplement systems, and ammonia accounted for 3.77% to 8.52%. However, in open-circuit systems, nitrite and ammonia proportions were 26.77% and 11.17%, respectively, and nitrogen loss in the liquid was not observed. This study reveals that photoelectrons can serve as electron donors for nitrogen transformation mediated by Halomonas sp. strain 3727, which reveals an underlying impact on the nitrogen biogeochemical cycle in the marine photic zone.

8.
Proc Natl Acad Sci U S A ; 116(20): 9741-9746, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31010932

RESUMO

Sunlight drives photosynthesis and associated biological processes, and also influences inorganic processes that shape Earth's climate and geochemistry. Bacterial solar-to-chemical energy conversion on this planet evolved to use an intricate intracellular process of phototrophy. However, a natural nonbiological counterpart to phototrophy has yet to be recognized. In this work, we reveal the inherent "phototrophic-like" behavior of vast expanses of natural rock/soil surfaces from deserts, red soils, and karst environments, all of which can drive photon-to-electron conversions. Using scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy, and X-ray absorption spectroscopy, Fe and Mn (oxyhydr)oxide-rich coatings were found in rock varnishes, as were Fe (oxyhydr)oxides on red soil surfaces and minute amounts of Mn oxides on karst rock surfaces. By directly fabricating a photoelectric detection device on the thin section of a rock varnish sample, we have recorded an in situ photocurrent micromapping of the coatings, which behave as highly sensitive and stable photoelectric systems. Additional measurements of red soil and powder separated from the outermost surface of karst rocks yielded photocurrents that are also sensitive to irradiation. The prominent solar-responsive capability of the phototrophic-like rocks/soils is ascribed to the semiconducting Fe- and Mn (oxyhydr)oxide-mineral coatings. The native semiconducting Fe/Mn-rich coatings may play a role similar, in part, to photosynthetic systems and thus provide a distinctive driving force for redox (bio)geochemistry on Earth's surfaces.

9.
Front Microbiol ; 10: 293, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886603

RESUMO

Rock varnish is a thin coating enriched with manganese (Mn) and iron (Fe) oxides. The mineral composition and formation of rock varnish elicit considerable attention from geologists and microbiologists. However, limited research has been devoted to the semiconducting properties of these Fe/Mn oxides in varnish and relatively little attention is paid to the mineral-microbe interaction under sunlight. In this study, the mineral composition and the bacterial communities on varnish from the Gobi Desert in Xinjiang, China were analyzed. Results of principal components analysis and t-test indicated that more electroactive genera such as Acinetobacter, Staphylococcus, Dietzia, and Pseudomonas gathered on varnish bacterial communities than on substrate rock and surrounding soils. We then explored the culture of varnish, substrate and soil samples in media and the extracellular electron transfer (EET) between bacterial communities and mineral electrodes under light/dark conditions for the first time. Orthogonal electrochemical experiments demonstrated that the most remarkable photocurrent density of 6.1 ± 0.4 µA/cm2 was observed between varnish electrode and varnish microflora. Finally, based on Raman and 16S rRNA gene-sequencing results, coculture system of birnessite and Pseudomonas (the major Mn oxide and a common electroactive bacterium in varnish) was established to study underlying mechanism. A steadily growing photocurrent (205 µA at 100 h) under light was observed with a stable birnessite after 110 h. However, only 47 µA was generated in the dark control and birnessite was reduced to Mn2+ in 13 h, suggesting that birnessite helped deliver electrons instead of serving as an electron acceptor under light. Our study demonstrated that electroactive bacterial communities were positively correlated with Fe/Mn semiconducting minerals in varnish, and diversified EET process occurred on varnish under sunlight. Overall, these phenomena may influence bacterial-community structure in natural environments over time.

10.
Nanomaterials (Basel) ; 8(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336546

RESUMO

The cost-effective exfoliation of layered materials such as transition metal dichalcogenides into mono- or few- layers is of significant interest for various applications. This paper reports the preparation of few-layered MoS2 from natural SiO2-containing molybdenite by exfoliation in isopropanol (IPA) under mild ultrasonic conditions. One- to six-layer MoS2 nanosheets with dimensions in the range of 50-200 nm are obtained. By contrast, MoS2 quantum dots along with nanosheets are produced using N-methyl-pyrrolidone (NMP) and an aqueous solution of poly (ethylene glycol)-block-poly (propylene glycol)-block-poly (ethylene glycol) (P123) as exfoliation solutions. Compared with molybdenite, commercial bulk MoS2 cannot be exfoliated to nanosheets under the same experimental conditions. In the exfoliation process of the mineral, SiO2 associated in molybdenite plays the role of similar superfine ball milling, which significantly enhances the exfoliation efficiency. This work demonstrates that isopropanol can be used to exfoliate natural molybdenite under mild conditions to produce nanosheets, which facilitates the preparation of highly concentrated MoS2 dispersions or MoS2 in powder form due to the volatility of the solvent. Such exfoliated MoS2 nanosheets exhibit excellent photoconductivity under visible light. Hence, the direct mild exfoliation method of unrefined natural molybdenite provides a solution for low-cost and convenient production of few-layered MoS2 which is appealing for industrial applications.

11.
Bioelectrochemistry ; 123: 233-240, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29894900

RESUMO

In recent years, considerable research effort has explored the interaction between semiconducting minerals and microorganisms, such relationship is a promising way to increase the efficiency of bioelectrochemical systems. Herein, the enhancement of electron transfer between birnessite photoanodes and Pseudomonas aeruginosa PAO1 under visible light was investigated. Under light illumination and positive bias, the light-birnessite-PAO1 electrochemical system generated a photocurrent of 279.57 µA/cm2, which is 322% and 170% higher than those in the abiotic control and dead culture, suggesting photoenhanced electrochemical interaction between birnessite and Pseudomonas. The I-t curves presented repeatable responses to light on/off cycles, and multi-conditions analyses indicated that the enhanced photocurrent was attributed to the additional redox species associated with P. aeruginosa PAO1 and with the biofilm on birnessite. Electroconductibility analysis was conducted on the biofilm cellularly by conductive atomic force microscope. Pyocyanin was isolated as the biosynthesized extracellular shuttle and characterized by cyclic voltammetry and surface-enhanced Raman spectroscopy. Rapid bioelectron transfer driven by light was observed. The results suggest new opportunities for designing photo-bioelectronic devices and expanding our understanding of extracellular electron transfer with semiconducting minerals under light in nature environments.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Óxidos/química , Pseudomonas aeruginosa/fisiologia , Biofilmes , Eletricidade , Eletrodos , Transporte de Elétrons , Desenho de Equipamento , Luz , Oxirredução , Piocianina/metabolismo , Semicondutores
12.
J Environ Sci (China) ; 52: 259-267, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28254046

RESUMO

Birnessite films on fluorine-doped tin oxide (FTO) coated glass were prepared by cathodic reduction of aqueous KMnO4. The deposited birnessite films were characterized with X-ray diffraction, Raman spectroscopy, scanning electron microscopy and atomic force microscopy. The photoelectrochemical activity of birnessite films was investigated and a remarkable photocurrent in response to visible light was observed in the presence of phenol, resulting from localized manganese d-d transitions. Based on this result, the photoelectrocatalytic oxidation of phenol was investigated. Compared with phenol degradation by the electrochemical oxidation process or photocatalysis separately, a synergetic photoelectrocatalytic degradation effect was observed in the presence of the birnessite film coated FTO electrode. Photoelectrocatalytic degradation ratios were influenced by film thickness and initial phenol concentrations. Phenol degradation with the thinnest birnessite film and initial phenol concentration of 10mg/L showed the highest efficiency of 91.4% after 8hr. Meanwhile, the kinetics of phenol removal was fit well by the pseudofirst-order kinetic model.


Assuntos
Modelos Químicos , Óxidos/química , Fenol/química , Processos Fotoquímicos , Poluentes Químicos da Água/química , Oxirredução , Purificação da Água/métodos
13.
Geochem Trans ; 16: 11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257581

RESUMO

BACKGROUND: Mn oxides occur in a wide variety of geological settings and exert considerable influences on the components and chemical behaviors of sediments and soils. Microbial reduction of Mn oxides is an important process found in many different environments including marine and freshwater sediments, lakes, anoxic basins, as well as oxic-anoxic transition zone of ocean. Although the pathway of Mn anaerobic reduction by two model bacteria, Geobacter and Shewanella, has been intensively studied, Mn bio-reduction is still the least well-explored process in nature. Particularly, reduction of Mn oxides by other bacteria and in the presence of O2 has been fewly reported in recent publishes. RESULTS: A series of experiments were conducted to understand the capability of Dietzia DQ12-45-1b in bioreduction of birnessite. In anaerobic systems, Mn reduction rate reached as high as 93% within 4 weeks when inoculated with 1.0 × 10(10) cells/mL Dietzia DQ12-45-1b strains. Addition of AQDS enhanced Mn reduction rate from 53 to 91%. The anaerobic reduction of Mn was not coupled by any increase in bacterial protein concentration, and the reduction rate in the stable stage of day 2-14 was found to be in good proportion to the protein concentration. The anaerobic reduction of birnessite released Mn(II) either into the medium or adsorbed on the mineral or bacteria surface and resulted in the dissolution of birnessite as indicated by XRD, SEM and XANES. Under aerobic condition, the reduction rate was only 37% with a cell concentration of 1.0 × 10(10) cells/mL, much lower than that in parallel anaerobic treatment. Bacterial growth under aerobic condition was indicated by time-course increase of protein and pH. In contrast to anaerobic experiments, addition of AQDS decreased Mn reduction rate from 25 to 6%. The reduced Mn(II) combined with carbon dioxide produced by acetate metabolism, as well as an alkaline pH environment given by cell growth, finally resulted in the formation of Mn(II)-bearing carbonate (kutnohorite), which was verified by XRD and XANES results. The system with the highest cell concentration of 1.0 × 10(10) cells/mL gave rise to the most amount of kutnohorite, while concentration of Mn(II) produced with cell concentration of 6.2 × 10(8) cells/mL was too low to thermodynamically favor the formation of kutnohorite but result in the formation of aragonite instead. CONCLUSION: Dietzia DQ12-45-1b was able to anaerobically and aerobically reduce birnessite. The rate and extent of Mn(IV) reduction depend on cell concentration, addition of AQDS or not, and presence of O2 or not. Meanwhile, Mn(IV) bioreduction extent and suspension conditions determined the insoluble mineral products.

14.
Appl Environ Microbiol ; 81(16): 5387-94, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26048940

RESUMO

The utilization by Alcaligenes faecalis of electrodes as the electron donor for denitrification was investigated in this study. The denitrification rate of A. faecalis with a poised potential was greatly enhanced compared with that of the controls without poised potentials. For nitrate reduction, although A. faecalis could not reduce nitrate, at three poised potentials of +0.06, -0.06, and -0.15 V (versus normal hydrogen electrode [NHE]), the nitrate was partially reduced with -0.15- and -0.06-V potentials at rates of 17.3 and 28.5 mg/liter/day, respectively. The percentages of reduction for -0.15 and -0.06 V were 52.4 and 30.4%, respectively. Meanwhile, for nitrite reduction, the poised potentials greatly enhanced the nitrite reduction. The nitrite reduction rates for three poised potentials (-0.06, -0.15, and -0.30 V) were 1.98, 4.37, and 3.91 mg/liter/h, respectively. When the potentials were cut off, the nitrite reduction rate was maintained for 1.5 h (from 2.3 to 2.25 mg/liter/h) and then greatly decreased, and the reduction rate (0.38 mg/liter/h) was about 1/6 compared with the rate (2.3 mg/liter/h) when potential was on. Then the potentials resumed, but the reduction rate did not resume and was only 2 times higher than the rate when the potential was off.


Assuntos
Alcaligenes faecalis/metabolismo , Desnitrificação , Eletrodos/microbiologia , Transporte de Elétrons , Nitratos/metabolismo , Nitritos/metabolismo , Oxirredução
15.
Nat Commun ; 3: 768, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22473012

RESUMO

Phototrophy and chemotrophy are two dominant modes of microbial metabolism. To date, non-phototrophic microorganisms have been excluded from the solar light-centered phototrophic metabolism. Here we report a pathway that demonstrates a role of light in non-phototrophic microbial activity. In lab simulations, visible light-excited photoelectrons from metal oxide, metal sulfide, and iron oxide stimulated the growth of chemoautotrophic and heterotrophic bacteria. The measured bacterial growth was dependent on light wavelength and intensity, and the growth pattern matched the light absorption spectra of the minerals. The photon-to-biomass conversion efficiency was in the range of 0.13-1.90‰. Similar observations were obtained in a natural soil sample containing both bacteria and semiconducting minerals. Results from this study provide evidence for a newly identified, but possibly long-existing pathway, in which the metabolisms and growth of non-phototrophic bacteria can be stimulated by solar light through photocatalysis of semiconducting minerals.


Assuntos
Acidithiobacillus/crescimento & desenvolvimento , Acidithiobacillus/efeitos da radiação , Alcaligenes faecalis/crescimento & desenvolvimento , Alcaligenes faecalis/efeitos da radiação , Bactérias/crescimento & desenvolvimento , Bactérias/efeitos da radiação , Minerais/metabolismo , Processos Fototróficos , Acidithiobacillus/metabolismo , Alcaligenes faecalis/metabolismo , Bactérias/metabolismo , Fontes de Energia Bioelétrica , Biomassa , Energia Solar , Luz Solar
16.
Bioresour Technol ; 101(10): 3500-5, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20093012

RESUMO

Reductive decolorization of azo dye in wastewater was investigated in a dual-chamber microbial fuel cell (MFC) equipped with cathodes made of graphite or rutile-coated graphite. Rapid reduction of methyl orange (MO) with concomitant electricity production was achieved when the rutile-coated cathode was irradiated by visible light. The electrochemical impedance spectra (EIS) indicate that the polarization resistance (R(p)) of the rutile-cathode MFC decreased from 1378 Omega in dark to 443.4 Omega in light, demonstrating that photocatalysis of rutile can enhance the cathodic electron transfer process. The combination of the biologically active anode and photocatalysis-supported cathodic reduction of MO obeyed the pseudo-first-order kinetics. The analysis of decolorization products indicates that the azo bond of MO was probably cleaved by photoelectrons at the irradiated rutile-cathode, resulting in the products of colorless hydrazine derivatives. In addition, concurrently enhanced electricity generation in the MFCs involving photocatalyzed cathodic reduction of MO was observed throughout this study.


Assuntos
Compostos Azo/metabolismo , Fontes de Energia Bioelétrica , Corantes/metabolismo , Eletrodos , Catálise , Eletroquímica , Cinética , Oxirredução , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...